Course sections

1
Lecture 2.1.0 : Physics Based Model – Intro (Emperical vs Physics Model and Micro Scale Eqn – Basics)
2
Lecture 2.1.1 : Charge Continuity (Point form of Ohms Law
3
Lecture 2.1.2 : Mass Continuity Eqn (Ficks Law, Continuity Eqn, 1D Linear Diffusion)
4
Lecture 2.1.3 : Thermal Energy and Potential (Thermodynamic Potential
5
Lecture 2.1.4 : Thermodynamics Law and Gibbs Free Energy
6
Lecture 2.1.5 : Electro Chemical Potential (Partial Molar Qnty, Electrochemical Potential
7
Lecture 2.1.6 : Absolute Activity (Debye Huckle Theory
8
Lecture 2.1.7 : Binary Elctrolyte Behaviour(Stoichimetric Coefficient, Electronetrality in Electrolyte
9
Lecture 2.1.8 : Elecrolyte Mass Continuation Eqn Pt1 (Maxwell Stefan Relation
10
Lecture 2.1.9 : Electrolyte Mass Continuation Eqn Pt1 (Ion Fluxes
11
Lecture 2.1.10 : Boundary Conditions (Transfer Equations, Cell Level Quantities
12
Lecture 2.1.11 : Cell Operating Condition and Life (Cell Charging and Discharging, Cell C-Rating)
13
Lecture 2.1.12 : Improving Cell Life (Factors Effecting Cel Life, Cell Degradation Causes
14
Lecture 2.1.13 : Battery Calculaition Basics
15
Lecture 2.1.14 :Energy Consumption Pt01
16
Lecture 2.1.15 :Energy Consumption Pt02
17
Lecture 2.2.1 : Reduced Order Model for Cell Dynamics – Approach for Reduced Order Model
18
Lecture 2.2.2 : Finding Internal Resistance
19
Lecture 2.2.3 : Finding Impedance
20
Lecture 2.2.4 : Negative Electrode Transfer fnc.
21
Lecture 2.2.5 : Positive Electrode Transfer fnc.
22
Lecture 2.2.6 : 1D model for Ce(x,t)
23
Lecture 2.2.7 : Solution to homogenous PDE
24
Lecture 2.2.8 : One Dimensional Model
25
Lecture 2.2.9 : Summary of Transfer fnc
26
Lecture 2.2.10 : Cell Voltage
27
Lecture 2.2.11 : Full Cell Model
28
Lecture 2.2.12 : Model Blending
29
Unit 2 : Expert Lecture – Live (Battery Model)
30
Unit 2 : Assignment (Battery Model)

Demo Video

EV Powertrain Architecture and Energy Storage System

Call Now Button
Call Now Button